跟着实例学Go语言(二)
本教程全面涵盖了Go语言基础的各个方面。一共80个例子,每个例子对应一个语言特性点,非常适合新人快速上手。
教程代码示例来自go by example,文字部分来自本人自己的理解。
本文是教程系列的第二部分,共计20个例子、约1.2万字。
目录
- 21. Interfaces
- 22. Struct Embedding
- 23. Generics
- 24. Errors
- 25. Goroutines
- 26. Channels
- 27. Channel Buffering
- 28. Channel Synchronization
- 29. Channel Directions
- 30. Select
- 31. Timeouts
- 32. Non-Blocking Channel Operations
- 33. Closing Channels
- 34. Range over Channels
- 35. Timers
- 36. Tickers
- 37. Worker Pools
- 38. WaitGroups
- 39. Rate Limiting
- 40. Atomic Counters
21. Interfaces
下面的例子展示了用interface关键字定义接口。接口是一组方法签名的集合,用于实现多态。Go不像其他语言那样需要通过extend关键字显式指定类型的继承关系。如果一个struct类型实现了interface中定义的所有方法,那么就认为这个struct类型属于interface所定义的类型。传统的面向对象语言逻辑是:A is B if it’s a child of B;而Go的逻辑是:A is B if it acts like B。
package main
import (
"fmt"
"math"
)
// 定义了interface:几何体,以及方法:计算面积、计算周长
// 定义顺序:type、interface名、interface
type geometry interface {
area() float64
perim() float64
}
// 定义了struct:矩形和圆形,分别实现了geometry定义的所有接口
type rect struct {
width, height float64
}
type circle struct {
radius float64
}
func (r rect) area() float64 {
return r.width * r.height
}
func (r rect) perim() float64 {
return 2*r.width + 2*r.height
}
func (c circle) area() float64 {
return math.Pi * c.radius * c.radius
}
func (c circle) perim() float64 {
return 2 * math.Pi * c.radius
}
func measure(g geometry) {
fmt.Println(g)
fmt.Println(g.area())
fmt.Println(g.perim())
}
func main() {
r := rect{width: 3, height: 4}
c := circle{radius: 5}
// 矩形和圆形都可以作为几何体类型的参数传递
measure(r)
measure(c)
}
$ go run interfaces.go
{3 4}
12
14
{5}
78.53981633974483
31.41592653589793
22. Struct Embedding
下面的例子展示了结构体嵌套的做法。Go允许struct或者interface的嵌套使用,从而组合成更复杂的结构。这有点像Java中的外部类和内部类,外部结构和内部结构可以互相访问对方的字段和方法。这也可以看做是Go通过组合的方式来实现其他语言中的继承。
package main
import "fmt"
// 定义了基础类型
type base struct {
num int
}
func (b base) describe() string {
return fmt.Sprintf("base with num=%v", b.num)
}
// 定义了包装类型
type container struct {
// 包装类型中包含了基础类型
base
str string
}
func main() {
co := container{
base: base{
num: 1,
},
str: "some name",
}
// num变量可以被直接或间接访问
fmt.Printf("co={num: %v, str: %v}\n", co.num, co.str)
fmt.Println("also num:", co.base.num)
fmt.Println("describe:", co.describe())
type describer interface {
describe() string
}
var d describer = co
fmt.Println("describer:", d.describe())
}
$ go run struct-embedding.go
co={num: 1, str: some name}
also num: 1
describe: base with num=1
describer: base with num=1
23. Generics
泛型是Go 1.18版本引入的有争议但很有用的特性。泛型可以看做是类型参数,经常与map、slice等数据结构伴随使用。泛型用中括号表示,而不是其他语言中常用的尖括号。
package main
import "fmt"
// 泛型声明放在函数名后或者类型名后,可以为泛型参数指定要实现的接口名
func MapKeys[K comparable, V any](m map[K]V) []K {
r := make([]K, 0, len(m))
for k := range m {
r = append(r, k)
}
return r
}
type List[T any] struct {
head, tail *element[T]
}
type element[T any] struct {
next *element[T]
val T
}
func (lst *List[T]) Push(v T) {
if lst.tail == nil {
lst.head = &element[T]{val: v}
lst.tail = lst.head
} else {
lst.tail.next = &element[T]{val: v}
lst.tail = lst.tail.next
}
}
func (lst *List[T]) GetAll() []T {
var elems []T
for e := lst.head; e != nil; e = e.next {
elems = append(elems, e.val)
}
return elems
}
func main() {
var m = map[int]string{1: "2", 2: "4", 4: "8"}
fmt.Println("keys:", MapKeys(m))
_ = MapKeys[int, string](m)
lst := List[int]{}
lst.Push(10)
lst.Push(13)
lst.Push(23)
fmt.Println("list:", lst.GetAll())
}
$ go run generics.go
keys: [4 1 2]
list: [10 13 23]
24. Errors
Go提供了error和panic两种异常处理的方式。不同点在于,前者用于意料中的错误,通过函数返回值获取;后者用于意料外的严重错误,会中断程序执行,但可用recover捕捉恢复。Go建议对于一般错误,尽量使用error来处理。
package main
import (
"errors"
"fmt"
)
func f1(arg int) (int, error) {
if arg == 42 {
// 使用errors.New()生成新的error,并作为第二个值返回
return -1, errors.New("can't work with 42")
}
return arg + 3, nil
}
type argError struct {
arg int
prob string
}
func (e *argError) Error() string {
return fmt.Sprintf("%d - %s", e.arg, e.prob)
}
func f2(arg int) (int, error) {
if arg == 42 {
return -1, &argError{arg, "can't work with it"}
}
return arg + 3, nil
}
func main() {
for _, i := range []int{7, 42} {
if r, e := f1(i); e != nil {
fmt.Println("f1 failed:", e)
} else {
fmt.Println("f1 worked:", r)
}
}
for _, i := range []int{7, 42} {
if r, e := f2(i); e != nil {
fmt.Println("f2 failed:", e)
} else {
fmt.Println("f2 worked:", r)
}
}
_, e := f2(42)
if ae, ok := e.(*argError); ok {
fmt.Println(ae.arg)
fmt.Println(ae.prob)
}
}
$ go run errors.go
f1 worked: 10
f1 failed: can't work with 42
f2 worked: 10
f2 failed: 42 - can't work with it
42
can't work with it
25. Goroutines
协程是Go的核心特性之一,它是一种轻量级的线程和任务调度机制,运行在操作系统级别的线程之上。它可以灵活地处理阻塞,从而减少大量异步代码的编写。我们可以开启大量的协程,而不用担心内存资源占用和线程上下文切换的代价。
package main
import (
"fmt"
"time"
)
func f(from string) {
for i := 0; i < 3; i++ {
fmt.Println(from, ":", i)
}
}
func main() {
f("direct")
// 可以通过go执行函数来启动协程
go f("goroutine")
go func(msg string) {
fmt.Println(msg)
}("going")
// 注意协程不会阻止主线程的结束,即使协程还未执行完。所以这里需要sleep 1秒
time.Sleep(time.Second)
fmt.Println("done")
}
$ go run goroutines.go
direct : 0
direct : 1
direct : 2
goroutine : 0
going
goroutine : 1
goroutine : 2
done
26. Channels
通道可用于在多个goroutine之间通信。发送方发送消息到通道中,接收方再从通道中接收消息。当使用非缓存通道时,发送和接收消息是同步操作,若有一方未完成都会造成对方阻塞。
package main
import "fmt"
func main() {
// channel是引用类型,需要通过make创建
messages := make(chan string)
// 发送ping消息,并阻塞等待接收方
go func() { messages <- "ping" }()
// 接收ping消息,在接收到消息前阻塞
msg := <-messages
fmt.Println(msg)
}
$ go run channels.go
ping
27. Channel Buffering
缓冲通道可以支持异步发送,无需等待接收方响应。在创建时可指定最大缓冲队列大小,若队列中消息长度超过最大值,则发送还是会被阻塞。接收方无论是哪种情况,只要没有消息可以接收,就一定会被阻塞。
package main
import "fmt"
func main() {
// 指定缓冲队列最大长度为2
messages := make(chan string, 2)
// 发送不再会被阻塞,因为有缓存队列
messages <- "buffered"
messages <- "channel"
fmt.Println(<-messages)
fmt.Println(<-messages)
}
$ go run channel-buffering.go
buffered
channel
28. Channel Synchronization
Go鼓励通过通信的方式(CSP模型)实现同步,而非传统的共享内存。下面的例子展示了通过将主线程阻塞在接收端,从而保证goroutine先于主线程执行完。
package main
import (
"fmt"
"time"
)
func worker(done chan bool) {
fmt.Print("working...")
time.Sleep(time.Second)
fmt.Println("done")
done <- true
}
func main() {
done := make(chan bool, 1)
go worker(done)
// 主线程阻塞在接收端,直至goroutine发送结束消息
<-done
}
$ go run channel-synchronization.go
working...done
29. Channel Directions
通道在作为参数传递给函数时,可以指定通道的方向,函数内部只能按指定的方向发送或者接收数据。下面的例子展示了通过pings、pongs两个通道实现乒乓消息(先发送后回收)的效果。
package main
import "fmt"
// 先发送消息给pings
func ping(pings chan<- string, msg string) {
pings <- msg
}
// 再从pings中取消息,发送给pongs
func pong(pings <-chan string, pongs chan<- string) {
msg := <-pings
pongs <- msg
}
func main() {
pings := make(chan string, 1)
pongs := make(chan string, 1)
ping(pings, "passed message")
pong(pings, pongs)
// 最后从pongs中取消息
fmt.Println(<-pongs)
}
$ go run channel-directions.go
passed message
30. Select
通过select可以实现在多个channel上等待。用法有点类似于网络通信中的select模型,只要有任意一个通道接收到数据,就可以从select中接触阻塞并读取这次到达的数据。
package main
import (
"fmt"
"time"
)
func main() {
c1 := make(chan string)
c2 := make(chan string)
go func() {
// sleep 1秒,模拟耗时操作
time.Sleep(1 * time.Second)
c1 <- "one"
}()
go func() {
time.Sleep(2 * time.Second)
c2 <- "two"
}()
// 循环两次,保证从两个channel都读到数据
for i := 0; i < 2; i++ {
select {
// 用select结合case实现多通道等待
case msg1 := <-c1:
fmt.Println("received", msg1)
case msg2 := <-c2:
fmt.Println("received", msg2)
}
}
}
$ time go run select.go
received one
received two
real 0m2.245s
31. Timeouts
超时可结合select使用,用于限制从channel获取消息的最大时间。
package main
import (
"fmt"
"time"
)
func main() {
c1 := make(chan string, 1)
go func() {
time.Sleep(2 * time.Second)
c1 <- "result 1"
}()
select {
case res := <-c1:
fmt.Println(res)
// 限制超时时间为1秒
case <-time.After(1 * time.Second):
fmt.Println("timeout 1")
}
c2 := make(chan string, 1)
go func() {
time.Sleep(2 * time.Second)
c2 <- "result 2"
}()
select {
case res := <-c2:
fmt.Println(res)
case <-time.After(3 * time.Second):
fmt.Println("timeout 2")
}
}
$ go run timeouts.go
timeout 1
result 2
32. Non-Blocking Channel Operations
通常通道的发送和接收都是阻塞的。但是我们可以使用select和default来实现非阻塞操作,发送和接收都不再阻塞,而是在尝试失败后立即走default定义的默认逻辑。
package main
import "fmt"
func main() {
messages := make(chan string)
signals := make(chan bool)
select {
case msg := <-messages:
fmt.Println("received message", msg)
// 没有收到消息,不会阻塞,而是走default逻辑
default:
fmt.Println("no message received")
}
msg := "hi"
select {
case messages <- msg:
fmt.Println("sent message", msg)
// 没有接收方接收消息,不会阻塞,而是走default逻辑
default:
fmt.Println("no message sent")
}
select {
case msg := <-messages:
fmt.Println("received message", msg)
case sig := <-signals:
fmt.Println("received signal", sig)
default:
fmt.Println("no activity")
}
}
$ go run non-blocking-channel-operations.go
no message received
no message sent
no activity
33. Closing Channels
关闭通道后,通道不再允许发送消息。这时接收方读取完通道中所有消息后,得到结束信号,做通信结束的后续操作。
package main
import "fmt"
func main() {
jobs := make(chan int, 5)
done := make(chan bool)
go func() {
for {
// 关闭channel且读完通道中所有消息后,more取到false,结束通信
j, more := <-jobs
if more {
fmt.Println("received job", j)
} else {
fmt.Println("received all jobs")
done <- true
return
}
}
}()
for j := 1; j <= 3; j++ {
jobs <- j
fmt.Println("sent job", j)
}
// 用close函数关闭channel
close(jobs)
fmt.Println("sent all jobs")
// 用消息阻塞保证goroutine先于主线程执行完
<-done
}
$ go run closing-channels.go
sent job 1
received job 1
sent job 2
received job 2
sent job 3
received job 3
sent all jobs
received all jobs
34. Range over Channels
使用range也可用于从通道接收消息,包括在已关闭的通道上。
package main
import "fmt"
func main() {
queue := make(chan string, 2)
queue <- "one"
queue <- "two"
close(queue)
// 即使通道已关闭,仍然可以用range接收消息
for elem := range queue {
fmt.Println(elem)
}
}
$ go run range-over-channels.go
one
two
35. Timers
定时器用于在将来的某个时间点执行代码。通过从通道接收到消息的方式表示达到触发时间点,接收到的消息为当前时间。
package main
import (
"fmt"
"time"
)
func main() {
// 用time.NewTimer()定义2秒后的定时器
timer1 := time.NewTimer(2 * time.Second)
// 阻塞在这里,直到到达触发时间点
<-timer1.C
fmt.Println("Timer 1 fired")
timer2 := time.NewTimer(time.Second)
// 用goroutine的方式避免阻塞主线程
go func() {
<-timer2.C
fmt.Println("Timer 2 fired")
}()
// 用Stop()停止定时器
stop2 := timer2.Stop()
if stop2 {
fmt.Println("Timer 2 stopped")
}
time.Sleep(2 * time.Second)
}
$ go run timers.go
Timer 1 fired
Timer 2 stopped
36. Tickers
周期定时器用于在将来周期性地执行某个任务,直至我们让它停下。
package main
import (
"fmt"
"time"
)
func main() {
// 定义了一个周期为500毫秒的周期定时器
ticker := time.NewTicker(500 * time.Millisecond)
done := make(chan bool)
go func() {
for {
select {
case <-done:
return
// 每间隔500毫秒从定时器通道接收到消息
case t := <-ticker.C:
fmt.Println("Tick at", t)
}
}
}()
// 1.6秒后停止定时器
time.Sleep(1600 * time.Millisecond)
ticker.Stop()
done <- true
fmt.Println("Ticker stopped")
}
$ go run tickers.go
Tick at 2012-09-23 11:29:56.487625 -0700 PDT
Tick at 2012-09-23 11:29:56.988063 -0700 PDT
Tick at 2012-09-23 11:29:57.488076 -0700 PDT
Ticker stopped
37. Worker Pools
工人池(协程池)用于使用固定数量的协程处理任务,防止协程数量太多。在部分特殊场景需要使用。协程池并非Go语言原生概念,而是基于已有语言特性搭建的开发模型。
package main
import (
"fmt"
"time"
)
// worker从jobs通道获取任务,并将执行结果发送到results通道
func worker(id int, jobs <-chan int, results chan<- int) {
for j := range jobs {
fmt.Println("worker", id, "started job", j)
time.Sleep(time.Second)
fmt.Println("worker", id, "finished job", j)
results <- j * 2
}
}
func main() {
const numJobs = 5
jobs := make(chan int, numJobs)
results := make(chan int, numJobs)
// 开启worker数量为3的协程池
for w := 1; w <= 3; w++ {
go worker(w, jobs, results)
}
// 将新任务添加到jobs通道中
for j := 1; j <= numJobs; j++ {
jobs <- j
}
close(jobs)
for a := 1; a <= numJobs; a++ {
<-results
}
}
$ time go run worker-pools.go
worker 1 started job 1
worker 2 started job 2
worker 3 started job 3
worker 1 finished job 1
worker 1 started job 4
worker 2 finished job 2
worker 2 started job 5
worker 3 finished job 3
worker 1 finished job 4
worker 2 finished job 5
real 0m2.358s
38. WaitGroups
前面的例子展示了如何用通道实现主线程和单个goroutine之间的等待。下面将会展示如何使用WaitGroup实现对多个goroutine的等待。
package main
import (
"fmt"
"sync"
"time"
)
func worker(id int) {
fmt.Printf("Worker %d starting\n", id)
time.Sleep(time.Second)
fmt.Printf("Worker %d done\n", id)
}
func main() {
var wg sync.WaitGroup
for i := 1; i <= 5; i++ {
// 对每个goroutine,等待计数加1
wg.Add(1)
i := i
go func() {
// 延迟执行,完成工作后,将等待计数减1
defer wg.Done()
worker(i)
}()
}
// 当等待计数为0时,结束等待
wg.Wait()
}
$ go run waitgroups.go
Worker 5 starting
Worker 3 starting
Worker 4 starting
Worker 1 starting
Worker 2 starting
Worker 4 done
Worker 1 done
Worker 2 done
Worker 5 done
Worker 3 done
39. Rate Limiting
速率限制是互联网和软件工程中的概念,用于防止对资源的使用超过一定限度。Go通过周期定时器和通道可以方便地实现这一功能。
package main
import (
"fmt"
"time"
)
func main() {
requests := make(chan int, 5)
for i := 1; i <= 5; i++ {
requests <- i
}
close(requests)
limiter := time.Tick(200 * time.Millisecond)
for req := range requests {
// 每200毫秒结束阻塞,接收一次请求
<-limiter
fmt.Println("request", req, time.Now())
}
burstyLimiter := make(chan time.Time, 3)
// 先允许执行三次
for i := 0; i < 3; i++ {
burstyLimiter <- time.Now()
}
// 然后每200毫秒允许执行一次
go func() {
for t := range time.Tick(200 * time.Millisecond) {
burstyLimiter <- t
}
}()
burstyRequests := make(chan int, 5)
for i := 1; i <= 5; i++ {
burstyRequests <- i
}
close(burstyRequests)
for req := range burstyRequests {
<-burstyLimiter
fmt.Println("request", req, time.Now())
}
}
$ go run rate-limiting.go
request 1 2012-10-19 00:38:18.687438 +0000 UTC
request 2 2012-10-19 00:38:18.887471 +0000 UTC
request 3 2012-10-19 00:38:19.087238 +0000 UTC
request 4 2012-10-19 00:38:19.287338 +0000 UTC
request 5 2012-10-19 00:38:19.487331 +0000 UTC
request 1 2012-10-19 00:38:20.487578 +0000 UTC
request 2 2012-10-19 00:38:20.487645 +0000 UTC
request 3 2012-10-19 00:38:20.487676 +0000 UTC
request 4 2012-10-19 00:38:20.687483 +0000 UTC
request 5 2012-10-19 00:38:20.887542 +0000 UTC
40. Atomic Counters
Go中的同步方式除了通过channel通信,还可以通过原子计数器。通过原子技术器访问或者修改数值变量,可以让这些操作成为原子性的。
package main
import (
"fmt"
"sync"
"sync/atomic"
)
func main() {
var ops uint64
var wg sync.WaitGroup
for i := 0; i < 50; i++ {
wg.Add(1)
go func() {
for c := 0; c < 1000; c++ {
// 通过AddUnit64实现原子性增加,若是原子读取可用LoadUint64,注意这里需要传指针参数
atomic.AddUint64(&ops, 1)
}
wg.Done()
}()
}
wg.Wait()
fmt.Println("ops:", ops)
}
$ go run atomic-counters.go
ops: 50000